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Summary

We consider the problem of comparing two treatments on multiple endpoints where the goal is to
identify the endpoints that have treatment effects, while controlling the familywise error rate. Two
current approaches for this are (i) applying a global test within a closed testing procedure, and (ii)
adjusting individual endpoint p-values for multiplicity. We propose combining the two current methods.
We compare the combined method with several competing methods in a simulation study. It is con-
cluded that the combined approach maintains higher power under a variety of treatment effect configu-
rations than the other methods and is thus more power-robust.

Key words: Multiple endpoints; One-sided alternative; Closed test procedure;
O’Brien’s test; Bootstrap; Approximate likelihood ratio test.

1. Introduction

Many clinical trials are conducted to compare two treatment groups (e.g., a new
treatment and a control or placebo) with respect to several endpoints. Generally,
the treatment is expected to have a positive effect on each of the endpoints. There
are two possible inferential goals in these clinical trials. One goal is to establish a
significant overall difference between the groups using a global test of the overall
null hypothesis of no differences on any of the endpoints. The other goal is to
determine on which of the endpoints the treatment differs from the control. One
cannot simply test each endpoint separately at level a since this will inflate the
probability of at least one false rejection, called the familywise error rate (FWE).
For the second goal, an appropriate method must account for the multiplicity of
the tests involved, strongly controlling the FWE (Hochberg and Tamhane, 1987)
at a specified level a.

There are two standard approaches to controlling the FWE in the literature:
applying a global test of no treatment effect on any of the endpoints within a
closed testing procedure (Marcus, Peritz, and Gabriel, 1976) and adjusting the
single endpoint p-values for multiplicity. O’Brien (1984) proposed a simple glo-
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bal test, which is optimal when the treatment has the same positive standardized
effect on all of the endpoints. Other global tests have also been proposed (see,
e.g., Tang, Gnecco, and Geller, 1989; Follman, 1996; Läuter, 1996). Any
of these global tests can be applied in a closed testing procedure to determine
which of the endpoints are significant while controlling the FWE (Kropf, 1988;
Lehmacher, Wassmer, and Reitmeir, 1991; Wang, 1998). Adjusting the single
endpoint p-values for multiplicity can be done through bootstrap resampling
(Westfall and Young, 1993). This individual endpoint adjustment is generally
more effective when only a few of the endpoints are significant, as it is based on
the minimum individual p-value (or maximum individual t-statistic).

In this paper we propose a method that combines the closed testing procedure
based on O’Brien’s global test and the resampling based adjustment to individual
endpoint p-values. In Logan (2001) we have extended this procedure to include
the approximate likelihood ratio test of Tang et al. (1989) as well. This extension
is not discussed here because of space constraints, and will be reported elsewhere.
Such combined procedures, since they share many of the power characteristics of
the separate procedures, are more robust to the configuration of mean differences
than individual methods separately.

The organization of the paper is as follows. In Section 2 we outline the problem
and set the notation. In Section 3 we review the existing approaches mentioned
above. We describe the combined approach in Section 4. In Section 5 we present
the results of simulations to compare the proposed procedure with existing proce-
dures. Finally, in Section 6 we discuss the results and draw conclusions.

2. Notation and Problem Formulation

Let Xijk denote the measurement on the kth endpoint for the jth subject in the ith
treatment group. Assume that there are two independent treatment groups with n1

and n2 subjects. For treatment group i, assume that Xij ¼ ðXij1; Xij2; . . . ; XijKÞ0
ði ¼ 1; 2; j ¼ 1; 2; . . . ; niÞ, are independent and identically distributed (i.i.d.) ran-
dom vectors from a K-variate normal distribution with mean vector
mi ¼ ðmi1; mi2; . . . ; miKÞ

0 and a common covariance matrix S. Treatment 1 refers to
the test treatment and treatment 2 refers to the control.

We are interested primarily in identifying those endpoints that demonstrate a
significant improvement over the control. Therefore the family of hypotheses of
interest is the set of individual endpoint hypotheses,

H0k : m1k � m2k ¼ dk ¼ 0 vs. H1k : m1k � m2k ¼ dk > 0 ðk ¼ 1; 2; . . . ; KÞ :
ð2:1Þ

Here it is assumed that a higher mean response represents a positive treatment
effect for every endpoint.
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3. Review of Existing Procedures

3.1 Closure Method

The closure method was proposed by Marcus et al. (1976). From the family of
individual endpoint hypotheses (2.1), we first form a closure family by including
in it all intersections H0I ¼

T
k2 I

H0k for I � f1; 2; . . . ; Kg. Then we reject any

null hypothesis H0I (including any individual hypothesis H0k) at level a iff all null
hypotheses H0I 0 implying it (i.e. I � I 0) are rejected by their corresponding a-level
tests.
Kropf (1988) and Lehmacher et al. (1991) have given illustrations of the

steps of the closed test procedure in a multiple endpoint situation. All we need to
apply the closed testing procedure are appropriate a-level tests of all null hypo-
theses H0I .

3.2 Ordinary Least Squares (OLS) Test

The global hypothesis testing problem for endpoints k 2 I can be stated as

H0I : m1I ¼ m2I vs. H1I : dI ¼ m1I � m2I � 0

with dk > 0 for at least one k 2 I ; ð3:1Þ

where m1I and m2I are the mean vectors of those endpoints that are in I for treat-
ments 1 and 2, and 0 denotes the null vector of an appropriate dimension. Kudô

(1963) and Perlman (1969) derived the likelihood ratio tests for the above one-
sided alternative; however, these tests are very complicated and the null distribu-
tions of the test statistics are difficult to evaluate. O’Brien (1984) bypassed this
difficulty by using a restricted alternative hypothesis. He assumed that the standar-
dized treatment effect dk=sk is the same (equal to l) for each endpoint. Therefore
the hypothesis testing problem (3.1) reduces to the simple problem H0 : l ¼ 0 vs.
H1 : l > 0. The test statistic, using the ordinary least squares (OLS) estimate of l,
depends on the unknown covariance matrix. In practice, the estimated covariance
matrix is substituted, resulting in the test statistic

TOLS ¼ l̂lOLS

SEðl̂lOLSÞ
¼ J0t

ðJ0RJÞ1=2
; ð3:2Þ

where J is a vector of 1’s, R is the estimated correlation matrix and t is the vector
of t-statistics for the endpoints in I. The t-statistics are given by

tk ¼
�xx1 � k � �xx2 � k

sk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2

n1 þ n2

r
for k 2 I; ð3:3Þ
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where sk is the usual pooled standard deviation for endpoint k and �xxi � k is the
sample mean of the ith group for endpoint k. We do not use O’Brien’s GLS test
statistic because (i) it has slower convergence to the standard normal distribution
compared to TOLS, and (ii) Reitmeir and Wassmer (1996) have shown that, in
terms of the power to reject null hypotheses on individual endpoints within a
closed testing procedure, the OLS and GLS tests have similar power perform-
ances.

O’Brien proposed a t-distribution with n1 þ n2 � 2 jIj degrees of freedom as an
approximation to the null distribution of TOLS for small sample sizes. This gives
rather conservative results, especially if jIj is large relative to n1 and/or n2, but a
better approximation with guaranteed control of the type I error probability is not
yet available. Läuter’s (1996) test is exact; however, its power performance is not
satisfactory in a certain asymptotic case as noted by Frick (1996).

3.3 Approximate Likelihood Ratio (ALR) Test

Tang et al. (1989) derived an approximation to the likelihood ratio test of (3.1)
that is easy to compute and has a tabulable null distribution. The first step is to
compute the transformation

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2

n1 þ n2

r
Að�xx1� � �xx2�Þ ; ð3:4Þ

where A0A ¼ S�1 and A0SA ¼ I, so that z is a normal vector with the identity
covariance matrix I. The alternative hypothesis in terms of the transformed vector z
is now the polyhedral cone AðdÞ ¼ fAd j d � 0g. This cone alternative is approxi-
mated by the positive orthant. The exact likelihood ratio statistic for this approxi-
mate alternative can be easily derived because the components of z are i.i.d.
Nð0; 1Þ under H0. The resulting statistic is called the approximate likelihood ratio
(ALR) test statistic and it equals

gðzÞ ¼
PK
k¼1

fmax ðzk; 0Þg2 :

The null distribution of gðzÞ is a special case of the chi-bar-squared distribution
with binomial weights, given by

PðgðzÞ � cÞ ¼
PK
k¼0

K

k

� �
1

2K
Pðc2

k � cÞ
� �

; ð3:5Þ

where c2
0 ¼ 0.

The matrix A used in the transformation is not unique. Tang et al. (1989) sug-
gested using the Cholesky decomposition with a further restriction that A be cho-
sen so that the center direction of AðdÞ and the positive orthant coincide. Tang
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et al. note that a further requirement of order invariance could be imposed, but the
statistic gðzÞ does not change much. The left-root symmetric method of Läuter,

Kropf, and Glimm (1998) for finding the decomposition A0A ¼ S�1 is both scale
and order invariant.

The result (3.5) holds if and only if the covariance matrix is known. In practice,
the covariance matrix is estimated, but the sample sizes must be large for (3.5) to
provide a good approximation (Reitmeir and Wassmer, 1996). For small to mod-
erate sample sizes, the distribution of the ALR test using the estimated covariance
matrix can be obtained using simulation, since it does not depend on the true
covariance matrix S. This result is proved in Tamhane and Logan (2001), where
an accurate approximation to the critical values of the ALR test statistic in case of
an estimated covariance matrix is also given. The 5% critical values obtained via
simulation and the chi-bar-squared approximation are given in Table 1 for equal
sample sizes of n ¼ 10 and n ¼ 50, and for K ¼ 2; . . . ; 8. These estimated correct
critical values are used in all simulations.

3.4 Multiplicity Adjustments to Tests for Individual Endpoints

Another way to control the FWE for this family is to adjust the p-values of the
individual hypotheses (2.1) for multiplicity. Let pð1Þ � . . . � pðKÞ denote the or-
dered p-values corresponding to the one-sided t-statistics (given in equation (3.3))
for the hypotheses H0ð1Þ; . . . ; H0ðKÞ. Adjusted p-values for the step-down test pro-
cedure are given by

~ppðKÞ ¼ P min
1�‘�K

P‘ � pðKÞ
	 


and

~ppðkÞ ¼ max ~ppðkþ1Þ; P min
1�‘�k

P‘ � pðkÞ

� �� �
for k ¼ 1; . . . ; K � 1; ð3:6Þ

where P‘ refers to the random variable associated with the p-value for the ‘th
endpoint.

The bootstrap method of Westfall and Young (1993) allows one to estimate
the above adjusted p-values by resampling. Because a common covariance matrix
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Table 1

Critical Values for ALR test based on unknown S

n K

2 3 4 5 6 7 8

10 5:14 7:17 9:38 11:83 14:61 18:00 22:20
50 4:38 5:69 6:91 8:05 9:11 10:17 11:30
1 4:23 5:44 6:50 7:48 8:41 9:29 10:16



is assumed, the data from the two treatments can be pooled before drawing boot-
strap samples. The bootstrap method implicitly takes into account the correlations
between endpoints. Note, however, that at each stage of the closed testing proce-
dure, the test is based solely on the minimum p-value. Therefore using individual
endpoint adjustments can have less power compared to the OLS closed testing
procedure when all of the endpoints have treatment effects that are similar in mag-
nitude.

4. Proposed Combined Closed Testing Procedure

The individual endpoints method performs better when only a few endpoints have
treatment effects, while the OLS method performs better when all of the endpoints
have treatment effects. To exploit their complementary areas of strength, we pro-
pose to combine the two in a method analogous to Hothorn’s (1999) Tmax testing
principle, which uses the maximum of several t-statistics optimal under different
alternative configurations to test a given hypothesis. It should be noted that the
choice of the OLS test in the combined procedure is somewhat arbitrary; any
other global test could be used. However, this specific choice does not detract
from the principal advantage of the combined approach.

To test H0I , we propose to use the test statistic,

min min
k 2 I

pk
	 


; pI;OLS

	 

; ð4:1Þ

i.e., the minimum p-value between the individual endpoints in I and the OLS
global test on I. Because the minimum individual p-value and the OLS p-value
are positively correlated, taking the minimum of the two will not change the a-level
critical point substantially from that of each statistic separately. Therefore this
combined approach will mimic the power characteristics of the better method for
each situation, and will result in a method more power-robust to the configuration
of treatment effects.

The distribution of the test statistic to be used in the closed testing proce-
dure is complicated, but it can be easily estimated using bootstrap resampling.
To estimate the p-value for the test of H0I , we use the following algorithm.
The C language code for the algorithm is available from the web site
http://users.iems.northwestern.edu/�ajit.

1. Mean center the data:

yijk ¼ xijk � �xxi � k :

This mean centering allows one to pool the data from the two samples to-
gether, assuming a common covariance matrix S, and to mimic the null
hypothesis of no difference between the two treatment mean vectors.
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2. Generate M pairs of bootstrap samples of sizes n1 and n2 with replacement
from the pooled mean-centered data, yijk. The mth bootstrap sample
(m ¼ 1; . . . ; M) is denoted by

yijk*
ðmÞ

for i ¼ 1; 2; j ¼ 1; . . . ; ni; k ¼ 1; . . . ; K
n o

:

3. For each bootstrap sample, calculate the bootstrap t-statistics corresponding
to the individual hypotheses H0k,

tk*
ðmÞ ¼ �yy1 � k*ðmÞ � �yy2 � k*ðmÞ

sk*
ðmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

r for k 2 I; ð4:2Þ

where sk*
ðmÞ

is the pooled standard deviation for the kth endpoint of the mth
bootstrap sample. Then calculate the unadjusted bootstrap p-values

pk*
ðmÞ ¼ P Tn1þn2�2 > tk*

ðmÞ
	 


for k 2 I; ð4:3Þ

where Tn1þn2�2 is a Student’s t random variable with n1 þ n2 � 2 degrees of
freedom.

4. For each bootstrap sample, calculate the bootstrap OLS t-statistic correspond-
ing to the hypothesis H0I ,

t*
ðmÞ

I;OLS ¼ J0t*
ðmÞ

ðJ0R*ðmÞJÞ1=2
; ð4:4Þ

where R*ðmÞ is the estimated correlation matrix and t*
ðmÞ

is the vector of
t-statistics for endpoints in I, both computed from the mth bootstrap sample.
Then the bootstrap OLS p-value is given by

p*
ðmÞ

I;OLS ¼ P Tn1þn2�2jIj > t*
ðmÞ

I;OLS

	 

: ð4:5Þ

5. The p-value to test H0I is given by

pI ¼ P min min
k2 I

Pk; PI;OLS

	 

� min min

k2 I
pk; pI;OLS

	 
n o
; ð4:6Þ

where Pk is the random variable associated with the individual p-value for
the kth endpoint, PI;OLS is the random variable associated with the OLS
p-value for the endpoints in I, pk is the observed individual p-value for the
kth endpoint, and pI;OLS is the observed OLS p-value for the endpoints in I.
Note that if I contains only one endpoint k then pI equals pk. These p-values
can be estimated using

p̂pI ¼
1

M
#m min min

k2I
pk*

ðmÞ
; p*

ðmÞ
I;OLS

� �
� min min

k2 I
pk; pI;OLS

� �
( )

: ð4:7Þ

This bootstrap p-value can be compared to a to test H0I in the closed testing
procedure.
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One can also obtain the adjusted p-values for each subset hypothesis in the
closed testing procedure. The adjusted p-value for any H0I is simply the maximum
of the unadjusted p-values for all hypotheses H0I 0 implying H0I , i.e., I � I 0. How-
ever, this calculation requires evaluation of bootstrap p-values for all 2K � 1 sub-
set hypotheses. It is computationally quicker to apply a-level tests rather than
compute adjusted p-values, since if a certain hypothesis is accepted, the hypoth-
eses implied by it are accepted by implication, and their bootstrap p-values need
not be computed.

The bootstrap max t approach uses a shortcut based on the union-intersection
nature of the test, allowing it to bypass the sub-hypotheses of the closed testing
procedure and directly test the individual hypotheses. A similar shortcut can be
applied when using the combined test: if rejection of the overall null hypothesis is
caused by a particular individual hypothesis H0k, which produced the minimum
individual p-value, then that hypothesis can be rejected and removed from subse-
quent consideration. This shortcut is conjectured to be valid; however, we do not
have an analytical proof of this conjecture. While it remains to be proven, simula-
tion studies support the shortcut method’s control of the FWE. All of the simula-
tion studies in this paper apply the shortcut method.

5. Simulations

5.1 Design of Simulation Studies

Simulations were designed to compare the proposed combined method with
the bootstrap max t and the closed testing procedures based on the OLS and
the ALR tests. First, we simulated the FWE under the overall null configura-
tion, where all null hypotheses H0k : dk ¼ 0 are true. Sample sizes of n ¼ 10
and n ¼ 50 were investigated for K ¼ 4 and K ¼ 8 endpoints. Four correla-
tion matrices were considered: equal correlation with q ¼ 0:0; 0:5 and 0.7,
and block correlation with two blocks, ðf1; 2g; f3; 4gÞ for K ¼ 4 and
ðf1; 2; 3; 4g; f5; 6; 7; 8gÞ for K ¼ 8 with values of q ¼ 0:5 within blocks and
q ¼ 0:1 between blocks. In each simulation run n ¼ 10 or 50 deviates were
generated for each treatment group from an MVN distribution with mean
vector 0 and the given correlation matrix. For each configuration, a total of
10,000 runs were made. The bootstrap methods were based on 5,000 boot-
strap samples.

The power functions of the four methods were also compared through simula-
tion. Five different mean difference configurations (d) were studied for K ¼ 4
and K ¼ 8 endpoints with either 1=4, 1=2, 3=4 or all of the endpoints with
common dk > 0. In addition, a configuration was studied where all endpoints
had positive treatment differences, but half had large dk values and half had
small dk values. The same four correlation structures as in the FWE simulations
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were studied. In each simulation run, n ¼ 50 MVN deviates were generated
from both treatments, but with mean vector d for treatment 1 and 0 for treat-
ment 2. The criterion reported is the average power, which is the average of the
marginal powers for detecting each positive treatment difference. The powers for
four endpoints are reported in Table 2 and the powers for eight endpoints are
reported in Table 3.

Although the average of the marginal powers to detect treatment differences
is of primary interest when trying to identify which of the endpoints has a
treatment effect, sometimes the researcher is interested only in testing whether
there is a global treatment effect. To compare the performances of the given
methods in this situation, a final simulation study was designed. The same
correlation structures were used as above and the same treatment mean
configurations, but with different d values (to avoid powers close to 1). The
criterion given is the power to reject the global null hypothesis. The powers
for four endpoints are reported in Table 4 and the powers for eight endpoints
are reported in Table 5.

Biometrical Journal 43 (2001) 5 599

Table 2

Average Power ðK ¼ 4; n ¼ 50Þ

Corr. Structure d Average Power

Bootstrap Bootstrap Closed Closed
max t max t=OLS OLS ALR

Equal (0.0) ð0:5; 0; 0; 0Þ 0:590 0:575 0:192 0:524
ð0:5; 0:5; 0; 0Þ 0:623 0:615 0:321 0:600
ð0:5; 0:5; 0:5; 0Þ 0:655 0:664 0:511 0:674
ð0:5; 0:5; 0:5; 0:5Þ 0:711 0:771 0:784 0:776
ð0:25; 0:25; 0:75; 0:75Þ 0:601 0:623 0:614 0:627

Equal (0.5) ð0:5; 0; 0; 0Þ 0:623 0:619 0:165 0:619
ð0:5; 0:5; 0; 0Þ 0:645 0:640 0:253 0:659
ð0:5; 0:5; 0:5; 0Þ 0:671 0:665 0:407 0:691
ð0:5; 0:5; 0:5; 0:5Þ 0:717 0:737 0:759 0:693
ð0:25; 0:25; 0:75; 0:75Þ 0:611 0:616 0:544 0.607

Equal (0.7) ð0:5; 0; 0; 0Þ 0:658 0:657 0:174 0:737
ð0:5; 0:5; 0; 0Þ 0:674 0:673 0:236 0:719
ð0:5; 0:5; 0:5; 0Þ 0:698 0:695 0:383 0:689
ð0:5; 0:5; 0:5; 0:5Þ 0:729 0:738 0:759 0:652
ð0:25; 0:25; 0:75; 0:75Þ 0:625 0:627 0:526 0:616

Block (0.5, 0.1) ð0:5; 0; 0; 0Þ 0:597 0:586 0:178 0:540
ð0:5; 0:5; 0; 0Þ 0:622 0:616 0:288 0:555
ð0:5; 0:5; 0:5; 0Þ 0:663 0:658 0:459 0:679
ð0:5; 0:5; 0:5; 0:5Þ 0:704 0:742 0:761 0:735
ð0:25; 0:25; 0:75; 0:75Þ 0:612 0:620 0:594 0:609



5.2 Results

The FWE’s are not reported since all procedures maintained FWE’s reasonably well,

with none exceeding the .05-level critical value of 0:05 þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:05 � :95

10; 000

r
¼ 0:054.

It should be remarked that the tn1þn2�2jIj approximation for the OLS test is overly
conservative for n1 ¼ n2 ¼ 10 and K ¼ 8 with FWE’s < 0:03. In this situation,
the degrees of freedom are too low because the sample sizes are too small rela-
tive to K.

In terms of the average power to detect treatment differences, several trends are
worth noting. The two methods involving individual endpoints, the bootstrap
max t and the combined max t/OLS, have stable powers under more configurations
than does the OLS test by itself in a closed testing procedure. When only one-
fourth of the endpoints have treatment effects, the power of the OLS test drops
dramatically compared to the other two methods. When all of the endpoints have
equal treatment differences, the OLS test is most powerful, as expected. While the
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Table 3

Average Power ðK ¼ 8; n ¼ 50Þ

Corr. Structure d Average Power

Bootstrap Bootstrap Closed Closed
max t max t=OLS OLS ALR

Equal (0.0) ð0:5; 0; 0; 0Þ 0:503 0:492 0:038 0:362
ð0:5; 0:5; 0; 0Þ 0:524 0:519 0:011 0:461
ð0:5; 0:5; 0:5; 0Þ 0:554 0:574 0:316 0:581
ð0:5; 0:5; 0:5; 0:5Þ 0:609 0:733 0:762 0:746
ð0:25; 0:25; 0:75; 0:75Þ 0:545 0:576 0:547 0:579

Equal (0.5) ð0:5; 0; 0; 0Þ 0:543 0:542 0:079 0:416
ð0:5; 0:5; 0; 0Þ 0:564 0:562 0:125 0:514
ð0:5; 0:5; 0:5; 0Þ 0:587 0:584 0:246 0:573
ð0:5; 0:5; 0:5; 0:5Þ 0:636 0:670 0:714 0:578
ð0:25; 0:25; 0:75; 0:75Þ 0:569 0:575 0:456 0:541

Equal (0.7) ð0:5; 0; 0; 0Þ 0:597 0:597 0:086 0:567
ð0:5; 0:5; 0; 0Þ 0:610 0:610 0:130 0:596
ð0:5; 0:5; 0:5; 0Þ 0:626 0:625 0:232 0:559
ð0:5; 0:5; 0:5; 0:5Þ 0:664 0:675 0:716 0:515
ð0:25; 0:25; 0:75; 0:75Þ 0:588 0:591 0:434 0:555

Block (0.5, 0.1) ð0:5; 0; 0; 0Þ 0:526 0:521 0:055 0:322
ð0:5; 0:5; 0; 0Þ 0:549 0:546 0:130 0:338
ð0:5; 0:5; 0:5; 0Þ 0:574 0:573 0:267 0:551
ð0:5; 0:5; 0:5; 0:5Þ 0:632 0:697 0:734 0:649
ð0:25; 0:25; 0:75; 0:75Þ 0:564 0:576 0:500 0:542



OLS test is optimal for equal mean differences, it cannot be recommended due to
its loss in power when only a few of the endpoints have treatment effects.

The ALR test has more stable power than does the OLS test when only a few
of the endpoints have treatment effects. For K ¼ 4 endpoints the ALR test is
never far from the best performing method, usually performing better than the
others when 1=2 or 3=4th of the endpoints have treatment effects, and slightly
worse when either all or 1=4th of the endpoints have effects. The differences be-
come more pronounced when K ¼ 8. The ALR test loses 14–20% power relative
to the individual endpoint methods when 1=4th of the endpoints have treatment
effects. For the equal correlation of 0.5 and block correlation matrices, the ALR
test is dominated by the combined test. Under independence, its power increases
by no more than 1.5% over the combined test when at least half of the endpoints
have effects. In terms of average power, the combined test appears to do better
overall than the ALR test.

In comparing the combined test with the bootstrap max t test, note first that the
worst the combined test does is a 1.5% loss in power when one of the four inde-
pendent endpoints has a treatment effect. On the other hand, the combined test
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Table 4

Power to Reject Global Null Hypothesis ðK ¼ 4; n ¼ 50Þ

Corr. Structure d Power

Bootstrap Bootstrap
max t max t=OLS OLS ALR

Equal (0.0) ð0:4; 0; 0; 0Þ 0:419 0:418 0:267 0:406
ð0:4; 0:4; 0; 0Þ 0:640 0:668 0:637 0:739
ð0:4; 0:4; 0:4; 0Þ 0:782 0:852 0:912 0:896
ð0:4; 0:4; 0:4; 0:4Þ 0:868 0:966 0:991 0:967
ð0:2; 0:2; 0:4; 0:4Þ 0:717 0:837 0:913 0:857

Equal (0.5) ð0:4; 0; 0; 0Þ 0:426 0:422 0:155 0:475
ð0:4; 0:4; 0; 0Þ 0:596 0:592 0:346 0:703
ð0:4; 0:4; 0:4; 0Þ 0:685 0:682 0:599 0:757
ð0:4; 0:4; 0:4; 0:4Þ 0:750 0:762 0:823 0:696
ð0:2; 0:2; 0:4; 0:4Þ 0:617 0:619 0:594 0:601

Equal (0.7) ð0:4; 0; 0; 0Þ 0:466 0:465 0:142 0:625
ð0:4; 0:4; 0; 0Þ 0:586 0:584 0:297 0:833
ð0:4; 0:4; 0:4; 0Þ 0:655 0:655 0:525 0:834
ð0:4; 0:4; 0:4; 0:4Þ 0:688 0:690 0:723 0:601
ð0:2; 0:2; 0:4; 0:4Þ 0:597 0:596 0:522 0:609

Block (0.5, 0.1) ð0:4; 0; 0; 0Þ 0:427 0:419 0:191 0:447
ð0:4; 0:4; 0; 0Þ 0:590 0:587 0:453 0:557
ð0:4; 0:4; 0:4; 0Þ 0:728 0:734 0:732 0:819
ð0:4; 0:4; 0:4; 0:4Þ 0:802 0:854 0:920 0:834
ð0:2; 0:2; 0:4; 0:4Þ 0:631 0:667 0:733 0:655



generally has higher power when more than half the endpoints have treatment
effects. In addition, in the case where all endpoints have identical treatment ef-
fects, the combined test enjoys a 6–12% gain in power for four and eight end-
points under independence, a 2–4% gain in power under the equal correlation of
q ¼ 0:5, and a 4–6% gain in power under the block correlation structure. How-
ever, when q ¼ 0:7, the combined test and the bootstrap max t test have essen-
tially identical powers. Thus the combined test is more robust to the treatment
difference configuration than the bootstrap max t test.

The effect of increasing the correlation is generally, though not uniformly, to
reduce the relative effectiveness of the OLS test and to increase the relative effec-
tiveness of the bootstrap max t method. This ends up lessening the differences
between the bootstrap max t and the combined method, making the extra effort of
including the OLS test less worthwhile. However, there is still some small im-
provement when all of the endpoints have treatment effects. As mentioned above,
this improvement gets less pronounced as the correlations increase.

Next consider the case where the researcher’s primary interest is detection of an
overall treatment effect. First we examine the simulations under independence.
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Table 5

Power to Reject Global Null Hypothesis ðK ¼ 8; n ¼ 50Þ

Corr. Structure d Power

Bootstrap Bootstrap
max t max t=OLS OLS ALR

Equal (0.0) ð0:4; 0; 0; 0Þ 0:529 0:540 0:410 0:605
ð0:4; 0:4; 0; 0Þ 0:774 0:837 0:873 0:919
ð0:3; 0:3; 0:3; 0Þ 0:652 0:826 0:932 0:893
ð0:3; 0:3; 0:3; 0:3Þ 0:751 0:962 0:995 0:970
ð0:2; 0:2; 0:4; 0:4Þ 0:818 0:966 0:994 0:980

Equal (0.5) ð0:4; 0; 0; 0Þ 0:498 0:496 0:166 0:642
ð0:4; 0:4; 0; 0Þ 0:650 0:649 0:378 0:848
ð0:3; 0:3; 0:3; 0Þ 0:507 0:507 0:448 0:578
ð0:3; 0:3; 0:3; 0:3Þ 0:553 0:557 0:635 0:469
ð0:2; 0:2; 0:4; 0:4Þ 0:661 0:661 0:633 0:642

Equal (0.7) ð0:4; 0; 0; 0Þ 0:512 0:512 0:147 0:826
ð0:4; 0:4; 0; 0Þ 0:618 0:618 0:315 0:948
ð0:3; 0:3; 0:3; 0Þ 0:457 0:457 0:360 0:669
ð0:3; 0:3; 0:3; 0:3Þ 0:501 0:501 0:534 0:389
ð0:2; 0:2; 0:4; 0:4Þ 0:614 0:613 0:530 0:669

Block (0.5,0.1) ð0:4; 0; 0; 0Þ 0:476 0:472 0:210 0:575
ð0:4; 0:4; 0; 0Þ 0:634 0:635 0:510 0:555
ð0:3; 0:3; 0:3; 0Þ 0:552 0:559 0:593 0:646
ð0:3; 0:3; 0:3; 0:3Þ 0:613 0:655 0:796 0:629
ð0:2; 0:2; 0:4; 0:4Þ 0:688 0:718 0:800 0:673



The ALR test dominates the max t and the combined approach under independ-
ence. If fewer than half of the endpoints have treatment effects then the ALR test
performs better than the OLS test, while if more than half of the endpoints have
treatment effects then the OLS test performs best. In all configurations the com-
bined approach does better than just the bootstrap max t.

The situation changes if we look at endpoints with equal correlation of 0.5 and
0.7. In these cases, the bootstrap max t and combined methods perform almost
identically. The OLS test is less powerful than the other methods in all cases
except when all endpoints have equal treatment effects. If all endpoints have treat-
ment effects then the individual endpoint methods perform better than the ALR
test. Otherwise, the ALR test has higher power. The results for block correlation
fall in between those for independence and equal correlation of 0.5 or 0.7.

6. Discussion and Conclusions

Based on the simulation results we conclude that the combined test is very
powerful for detecting individual endpoint treatment effects and is more robust
to the configuration of the mean differences than the other methods. It is espe-
cially advantageous when the correlations between the endpoints are low and the
treatment effects are similar for all endpoints. There is very little loss of power
in other situations. The only drawback of the combined test is the additional
computation.

Clinical researchers often choose the endpoints that measure different aspects of
disease recovery. As a result, typical correlations range between 0.2 to 0.6, rarely
exceeding 0.7 or 0.8. In this sense very highly correlated endpoints are less infor-
mative. For such settings the combined test offers definite power gains.

In terms of the power to reject the global null hypothesis, the combined test is more
robust to the treatment effect configuration and correlation matrix than either the indi-
vidual endpoint test or the global OLS test alone. In this case the ALR test performs
better than the combined test in most situations and requires less computations.

The proposed combined test could easily be extended to MVN data with un-
equal covariance matrices, and even to non-normal data. All that is required are
appropriate individual endpoint tests and a global test. Then the bootstrap method
allows us to easily estimate the null distribution of the complicated combined test
statistic, while guaranteeing asymptotic control of the FWE. The work for unequal
covariance matrices will be reported in a future paper.
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